关于延性的概念与应用

redflag 发表于 2012-6-23 19:36:16 | 显示全部楼层 | 阅读模式
  结构,构件或构件的某个截面从屈服开始到达最大承载能力或到达以后而承载能力还没有明显下降期间的变形能力。延性好的结构,构件或构件的某个截面的后期变形能力大,在达到屈服或最大承载能力状态后仍能吸收一定量的能量,能避免脆性破坏的发生。

  延性是一种物理特性。其所指的是,材料在受力而产生破坏之前的塑性变形能力,与材料的延展性有关。举例来说,金、铜、铝等皆属于有较高延性的材料。

  脆性破坏 brittle failure 结构或构件在破坏前无明显变形或其它预兆破坏类型。

  延性破坏 ductile failure 结构或构件在破坏前有明显变形或其它预兆的破坏类型。

  在冲击和振动荷载作用下,要求结构的材料能够吸收较大的能量,同时能产生一定的变形而不致破坏,即要求结构或构件有较好的延性。例如,钢结构材料延性好,可抵抗强烈地震而不倒塌;而砖石结构变形能力差,在强烈地震下容易出现脆性破坏而倒塌。为此,砖石砌体结构房屋需按抗震规范要求设置构造柱和抗震圈梁,约束砌体的变形,以增加其在地震作用下的抗倒塌能力。钢筋混凝土材料具有双重性,如果设计合理,能消除或减少混凝土脆性性质的危害,充分发挥钢筋塑性性能,实现延性结构。为此,抗震的钢筋混凝土结构都要按照延性结构要求进行抗震设计,以达到抗震设防的三水准要求:小震下结构处于弹性状态;中震时,结构可能损坏,但经修理即可继续使用;大震时,结构可能有些破坏,但不致倒塌或危及生命安全。

界限轴压比和延性分析  碳纤维增强钢筋混凝土框架柱的界限轴压比和延性分析

  以新抗震设计规范为依据,分析并推导出碳纤维增强钢筋混凝土框架柱截面在界限破坏条件下的轴压比,研究了纵筋、箍筋和碳纤维布对柱轴压比限值和延性限值的影响.研究结果表明,纵筋等级越高,界限轴压比越小;箍筋和碳纤维布的体积配箍率越大,界限轴压比越大;现有公式不适用于约束混凝土柱在高轴压比下发生大偏心受压破坏时位移延性比的计算,因此对高轴压比下约束混凝土柱的延性性能需进一步研究.


4.提高结构延性的措施有哪些?
答:根据震害以及近年来国内外试验研究资料,延性框架设计时应注意以下几点:
(1)“强柱弱梁”设计原则—控制塑性铰的位置
在地震作用下,框架中塑性铰可能出现在梁上,也可能出现在柱上,但是不允许在梁的跨中出铰。梁的跨中处铰将导致局部破坏(图3)。在梁端和柱端的塑性铰,都必须具有延性,才能使结构在形成机构之前,结构可以抵抗外荷载并具有延性。

说明:图3为书上p153 10-3             图4 为书上p153 10-4

由图4可以看出,在框架结构中,塑性铰出现的位置或顺序不同,将使框架结构产生不同的破坏形式。图4(b)所示是一个强梁弱柱型结构,所以塑性铰首先出现在柱中,当某薄弱层柱的上下端均出现塑性铰时,该层就成为几何可变体系,而引起上部结构的倒塌。这种结构破坏时只跟最薄弱层柱的强度和延性性能有关,而与其它各层梁柱的承载能力和耗能能力均没有发挥作用。图4(a)是一个强柱弱梁型结构,塑性铰首先出现在梁中,当部分梁端甚至全部梁端均出现塑性铰时,结构仍能继续承受外荷载,而只有当柱子底部也出现塑性铰时,结构才达到破坏。由此可知,柱中出现塑性铰,不易修复而且容易引起结构倒塌;而塑性铰出现在梁端,却可以使结构在破坏前有较大的变形,吸收和耗散较多的地震能量,因而具有较好的抗震性能。震害调查发现:凡是具有现浇楼板的框架,由于现浇楼板大大加强了梁的强度和刚度,地震破坏都发生在柱中,破坏较严重;而没有楼板的构架式框架,裂缝出在梁中,破坏较轻,从而也证实强梁弱柱引起的结构震害比较严重。

此外,梁的延性远大于柱的延性。这是因为柱是压弯构件,较大的轴压比将使柱的延性下降,而梁是受弯构件,比较容易实现高延性比要求。

因此,较合理的框架破坏机制应是梁比柱的塑性屈服尽可能早发生和多发生,底层柱柱根的塑性铰较晚形成,各层柱子的屈服顺序应错开,不要集中在某一层。这种破坏机制的框架,就是强柱弱梁型框架。

(2)梁柱的延性设计

要使结构具有延性,就必需保证框架梁柱有足够的延性,而梁柱的延性是以其截面塑性铰的转动能力来度量的。因此框架结构抗震设计的关键是梁柱塑性铰设计。为此,应遵循:

1“强剪弱弯”设计原则——控制构件的破坏形态

适筋梁或大偏压柱,在截面破坏时可以达到较好的延性,可以吸收和耗散地震能量,使内力重分布得以充分发展;而钢筋混凝土梁柱在受到较大剪力时,往往呈现脆性破坏。所以在进行框架梁、柱设计时,应使构件的受剪承载力大于其受弯承载力,使构件发生延性较好的弯曲破坏,避免发生延性较差的剪切破坏,而且保证构件在塑性铰出现之后也不过早剪坏,这就是“强剪弱弯”的设计原则,它实际上是控制构件的破坏形态。

2梁、柱剪跨比限制

剪跨比反映了构件截面承受的弯矩与剪力的相对大小。它是影响梁、柱极限变形能力的主要因素之一,对构件的破坏形态有很重要的影响。
比如,柱的剪跨比λ=M/Vhc(MV分别是截面承受的弯矩、剪力值,hc为柱截面高度)。试验研究发现:剪跨比λ≥2的柱属于长柱,只要构造合理,通常发生延性好的弯曲破坏;当剪跨比1.5≤λ<2的柱为短柱,柱子将发生以剪切为主的破坏,当提高混凝土强度等级或配有足够的箍筋时,也可能发生具有一定延性的剪压破坏;而当剪跨比λ<1.5时为极短柱,柱的破坏形态是脆性的剪切斜拉破坏,几乎没有延性,设计中应当避免。

在一般框架结构中,柱内弯矩以地震作用产生的弯矩为主,所以可近似假定反弯点在柱高的中点,从而有柱端弯矩M=V·Hn/2,即M/V=Hn/2(Hn是柱的净高),代入λ=M/Vhc中,得λ=Hn/2hc。因此框架柱的分类又可用长细比表示为:Hn/hc≥4时为长柱;3≤Hn/hc≤4时为短柱;Hn/hc<3时为极短柱。


因此,为保证柱子发生延性破坏,抗震设计时要求柱净高与截面长边尺寸之比宜大于4,若不满足,应在柱全高范围内加密箍筋。


类似地,对框架梁而言,则要求其净跨ln与截面高度hb之比不宜小于4。当梁的跨度较小而梁的设计内力较大时,宜首先考虑加大梁宽,这样虽然会增加梁的纵筋用量,但对提高梁的延性却是十分有利的。


3)梁、柱剪压比限制


当构件的截面尺寸太小或混凝土强度太低时,按抗剪承载力公式计算的箍筋数量会很多,则箍筋在充分发挥作用之前,构件将过早呈现脆性斜压破坏,这时再增加箍筋用量已没有意义。因此,设计中应限制剪压比(V/fcbh0)即梁截面的平均剪应力,使箍筋数量不至于太多,同时,也可有效地防止斜裂缝过早出现,减轻混凝土碎裂程度。这实质上也是对构件最小截面尺寸的要求。


4)柱轴压比限制及其它措施

轴压比μN指柱有地震作用组合的柱轴压力设计值N与柱的全截面面积Ac和混凝土轴心抗压强度设计值fc乘积的比值,μN=N/fcAc=N/fcbchcbc、hc分别为柱截面的宽度和高度)。
框架柱在竖向荷载与地震作用下的轴压比宜满足表1的规定。若不满足,可加大截面尺寸或提高混凝土强度等级。
表1 柱轴压比限值(见规范)
在高层建筑中,底层柱往往承受很大的轴力,很难将轴压比限制在较低水平。为此,近年来,国内外对改进柱的延性性能做了大量试验研究。试验表明,在矩形柱或圆形柱内设置矩形核心柱(图6),不但可以提高柱的受压承载力,还可以提高柱的变形能力。在压、弯、剪作用下,当柱出现弯、剪裂缝,在大变形情况下芯柱可以有效地减小柱的压缩,保持柱的外形和截面承载力,特别对于承受高轴压的短柱,更有利于提高变形能力,延缓倒塌。
5)箍筋
震害表明,梁端、柱端震害严重,是框架梁、柱的薄弱部位。所以按照强剪弱弯原则设计的箍筋主要配置在梁端、柱端塑性铰区,称为箍筋加密区
在塑性铰区配置足够的箍筋,可约束核心混凝土,显著提高塑性铰区混凝土的极限应变值,提高抗压强度,防止斜裂缝的开展,从而可充分发挥塑性铰的变形和耗能能力,提高梁、柱的延性;而且钢箍作为纵向钢筋的侧向支承,阻止纵筋压屈,使纵筋充分发挥抗压强度。所以规范规定,在框架梁端、柱端塑性铰区,箍筋必须加密。
此外,框架结构构件的延性与箍筋形式有关。例如,西安建筑科技大学和日本川铁株式会社的研究表明,在其它条件相同的情况下,采用连续矩形复合螺旋箍比一般复合箍筋可提高柱的极限变形角25%。所以矩形截面柱采用连续矩形复合螺旋箍(图7),可大大提高其延性。
6)纵筋配筋率
试验表明:钢筋混凝土单筋梁的变形能力,随截面混凝土受压区相对高度x/h0的减小而增大,而x/h0随着配筋率的增大、钢筋屈服强度的提高和混凝土强度等级的降低而增大,延性性能降低。为此,规范对一、二、三级抗震等级框架梁的x/h0和ρmax作出了规定。同时,框架梁还应满足最小配筋率的要求。
而为了避免地震作用下框架柱过早地进入屈服阶段,增大屈服时柱的变形能力,提高柱的延性和耗能能力,全部纵向钢筋的配筋率不应过小。
(3)“强节点弱构件”设计原则
由于节点区的受力状况非常复杂,所以在结构设计时只有保证各节点不出现脆性剪切破坏,才能使梁、柱充分发挥其承载能力和变形能力。即在梁、柱塑性铰顺序出现完成之前,节点区不能过早破坏。   
实际设计中,为了保证框架结构的延性,《抗震设计规范》是依据抗震等级对构件本身不同性质的承载力或构件间的相对的承载力进行内力调整,并依据规定的构造要求来达到延性要求。内力调整系数,依据抗震等级不同而异:一级抗震等级以实际配筋为基础进行内力调整;二、三级抗震等级是在设计内力的基础上进行调整。而构造要求,则根据不同的抗震等级,规定出截面形式、尺寸限制、材料规格、配筋率以及构造形式等。


       延性抗震设计主要是利用结构、构件自身的延性耗能能力来抵抗地震作用,设计时是通过增加结构、构件延性来实现,对结构允许出现塑性铰的部分进行专门的延性设计。在该方法中,容许很大的地震力和能量从地面传递给结构,而抗震设计时要考虑的问题是如何为结构提供抵抗这种地震力的能力[5]。
  传统的桥梁抗震设计采用强度设计方法,即使考虑到延性和位移,也是通过强度指标间接地实现。现在人们越来越认识到了位移在桥梁结构抗震设计中的重要性,很多研究者和工程师建议在抗震设计中直接使用位移为设计参数,这样就将形成多参数抗震设计方法。在这方面,各种非弹性反应谱的研究和应用工作一直在进行。一些建筑结构抗震设计指南和准则已经引人了位移设计的概念和方法。
  由于《公路工程抗震设计规范》(JTJ 004-89)只采用一阶段设计,通过引入综合影响系数来折减地震力后采用弹性抗震设计,其隐含的意思是允许结构进入塑性,对结构的延性性能有相应的需求,但在设计上又没有进行必要的延性抗震设计,其延性能力能否满足延性需求是不确定的,这也是该规范存在的一个较大缺陷。因此,《公路桥梁抗震设计细则》(JTG/T B02-01-2008)对E2地震作用的抗震设计阶段,对延性抗震设计作了明确的规定,弥补了原规范的不足。
能力保护设计
  《公路桥梁抗震设计细则》(JTG/T B02-01-2008)中引入了能力保护设计原则。1971年美国圣弗尔南多(San Fernand)地震爆发以后,各国都认识到结构的延性能力对结构抗震性能的重要意义;在1994年美国北岭(Northridge)地震和1995年日本神户(Kobe)地震爆发后,强调结构总体延性能力已成为一种共识。为保证结构的延性,同时最大限度地避免地震破坏的随机性,新西兰学者Park等在20世纪70年代中期提出了结构抗震设计理论中的一个重要原则一能力保护设计原则(Philosophy of Capacity Design),并最早在新西兰混凝土设计规范(NZS3101,1982)中得到应用。以后这个原则先后被美国、欧洲和日本的等国家的桥梁抗震规范所采用。
   能力保护设计原则的基本思想在于:通过设计,使结构体系中的延性构件和能力保护构件形成强度等级差异,确保结构构件的地震破坏只发生在预定的部位,而且是可控制的,不发生脆性的破坏模式。具体来说,就是要选择理想的塑性铰位置并进行仔细的配筋设计以保证其延性抗震能力;而不利的塑性铰位置或破坏机制(脆性破坏)则要通过提供足够的强度加以避免。如今,能力保护设计思想已越来越广泛地被国内外专家学者所接受。

精彩评论倒序浏览

7219查看1评论

20052959 发表于 2012-6-24 16:23:57
总结的很不错!!学习了
举报 回复
 
 
  • QQ:56984982
  • 点击这里给我发消息
    电话:13527553862
    站务咨询群桥头堡站务咨询桥梁专业交流群:
    中国桥梁专业领袖群
    工作时间
    8:00-18:00